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Abstract

We present a new construction of wavelets on arbitrary two-manifold topol-

ogy for geometry compression. The constructed wavelets generalize sym-

metric tensor product wavelets with associated B-spline scaling functions

to irregular polygonal base mesh domains. The wavelets and scaling func-

tions are tensor products almost everywhere, except in the neighborhoods of

some extraordinary points (points of valence unequal four) in the base mesh
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that defines the topology. The compression of arbitrary polygonal meshes

representing isosurfaces of scalar-valued trivariate functions is a primary ap-

plication. The main contribution of this paper is the generalization of lifted

symmetric tensor product B-spline wavelets to two-manifold geometries. Sur-

faces composed of B-spline patches can easily be converted to this scheme.

We present a lossless compression method for geometries with or without as-

sociated functions like color, text ure, or normals. ‘The new wavelet transform

is highly efficient and can represent surfaces at any level of resolution with

high degrees of continuity, except at a finite number of extraordinary points

in the base mesh. In the neighborhoods of these points detail can be added

to the surface to approximate any degree of continuity.

1 Introduction .. . . .

Representing two-manifold geometries like isosurfaces, shock waves or mate-

rial boundaries in three-dimensional scalar or vector fields is an important

problem in scientific visualization. Surface representations need to provide

efficient access to local geometry satisfying any bounds on error or complexity

that are defined by a query. For storage and transmission purposes, com-

pressed representations are required to reduce storage space and transmission

time.

Wavelet representations [3, 4, 15, 24] satisfy many of these requirements. The

discrete wavelet transform (DWT) [18] is used in lossy and Iossless compres-

sion schemes for image and terrain data to obtain high compression rates.

Details defined by high frequencies are successively separated from the re-

maining spectrum of lower frequencies by representing an image as a two-

variate function in a wavelet basis, see Figure 1. Compression is obtained by

arithmetic encoding [20] of the wavelet coefficients that are sparse or have

low absolute values.
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Figure 1: Wiring diagram for DWT. The scaling function coefficients s: at

level j are obtained by low pass filtering and downsampling. The wavelet

coefficients w: are obtained by separating the highest

downsampling.

For compression purposes the DW’T is superior to the

frequency band

discrete Fourier

and

and
. .

cosine transforms, since it has efficiency O(n), where n is the number of pixels

or samples, and it can localize features in both signal and frequency space.

There exists a variety of different band pass and low pass filters with corre-

sponding basis functions (wavelets and scaling functions) that can be used to

implement a DWT. In most compression schemes used for image, terrain or

volume data, tensor product wavelets are used, i.e., a one-dimensional wavelet

transform is applied successively in the different dimensions of a dataset. For

more details about the wavelet transform and the construction of wavelets

with different properties, such as orthogonalit y, vanishing moments, and com-

pact support, we refer to [3, 4, 7, 12, 13, 15, 18, 19, 24, 25, 27].

Wavelets on arbitrary topology have been initially explored by Lounsbery

[16] and by Schroder and Sweldens [21]. Though Lounsbery pointed out

that wavelets can be constructed for any type of subdivision surface, most

approaches are based on triangular subdivision surfaces like the butterfly

scheme [8] and Loop’s scheme [17]. In the work presented here, we describe

a construction of wavelets based on subdivision surfaces similar to Catmull-

G7ark surfaces [2, 6, 22, 23] that generalize tensor product B-splines.

The paper is structured as follows: In Section 2, we define the lifting oper-

ations that are used to construct symmetric one-dimensional wavelets asso-
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ciated with B-spline scaling functions. In Section 3, these lifting operations

are generalized to polygonal meshes so that the wavelets from Section 2 can

be constructed for these polygonal meshes. In the case of a rectilinear mesh,

the constructed basis functions are tensor products. We present a lossless

geometry compression algorithm and provide numerical results in Section 4.

Directions for future research conclude the work in Section 5.

2 Symmetric Lifted Wavelets

Wavelet lifting was introduced by Sweldens [26], and it is often used for

wavelet construction, see [1, 14]. The idea is to decompose a single filtering

step of the DWT into small local filtering operations. Lifting can increase

the efficiency of the transform, make it feasible to use integer arithmetic for

lossless compression, and simplify the construction of wavelets. In this sec-

tion, we provide a class of lifted wavelets that can be generalized to polygonal

mesh domains. We start with reviewing some basics about the DWT.

2.1 Discrete Wavelet Transform

The DWT is a basis transform between certain spaces spanned by dilated

and translated versions of a wavelet @ and a scaling function ~:

A function f that is initially represented in a basis of scaling functions at a

level j. >0 as

f(x) = ~ S$ g$(z), (2.2)
i’ez

is decomposed into a basis of wavelets and scaling functions at level j. — 1,

f(z) = ~ w:’-’ ?/&-’(z)+ ~ s:’-’ ()$-’(z). (2.3)
icz icz
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‘This transform is called decomposition. Decomposition steps are successively

applied to the representation by scaling functions at the next coarser levels

until a base level j = O is reached. The function ~ is finally represented as

jc–l

f(z) = ~ ~
j=o i~z

Figure 2 is an illustration of this

AM

+ ,--,

basis transform.

w “ %t+-
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~ ‘ “4’@#- ————4#—————44—

Figure 2: Decomposition steps of a DW’T’. The function in the upper left

is transformed by successive decomposition steps, using a linear B-spline

wavelet.

A decomposition step is implemented by a discrete filtering with sequences

h and 1 that transform scaling function coefficients s{ at level j into scaling

function coefficients sj-l and wavelet coefficients Wi~–1 at level j – 1. The

decomposition rules are defined as

(2.5)

(2.6)

For the inverse DW”T each individual decomposition step is inverted by a

reconstruction step using filters ~ and ~,
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Applying reconstruction steps in reverse order of corresponding decomposi-

tion steps reproduces the initial representation defined by scaling functions

(2.2).

2.2 Lifting Approach

Rather then computing the coefficients defined in equations (2.5-2.7) di-

rectly, we subdivide the summation steps into local lifting operations that

can be computed more efficiently. We describe the lifting scheme illustrated

in Figure 3 using algorithmic notation. A decomposition step for the DWT

is defined by re-labeling coefficients

followed by a sequence of alternating s-lift and w-lift operations. These op-

erations modify- one coefficient at a time, depending on its own and its two

neighbors’ values. ‘The s-lift and w-lift operations are defined as

w-lift (a, b):
~j–1 * as3–1

2 2 + bw~-l + asj~f Vi (2.10)

Since we use the same lifting operations to construct both filters h and 1 at

once, we restrict the class of wavelets that can be defined by these opera-

tions. However, we gain efficiency by using this specific lifting scheme and,

as we show in Section 3, the s-lift and w-lift operations generalize nicely to

polygonal meshes. Another advantage is that each lifting step is inverted by

replacing a and b by – ~ and ~, respectively, see Figure 4. The only con-

straint for the existence of the inverse DWT is that the parameter b must be

non-zero for all lifting operations.
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Figure 3: Wiring diagram for lifted DWT. Lifting operations that modify co-

efficients with even indices are called .s-lifl and those that modify coefficients

with odd indices are called w-lift operations.

s-lift W–[L~t s–lift

L‘Vens;

i odd
.. ..— s;

Figure 4: Wiring diagram for inverse DW’T. The same lifting operations as

for DWT occur in reverse order with changed parameters tii = – ~ and

ii = &*

2.3 B-Spline Wavelet Construction

We choose B-splines as scaling functions due to their

use in computer-aided geometric design (CAGD) and

wide applicability and

approximation theory.

From the two-scale relation for B-splines [7], the reconstruction filter ~ is

given by

~($) = ~ i, #(2z – i). (2.11)
icz

The non-zero values for ~; can be obtained from Pascal’s triangle by dividing

the entries in the (n+ 2)th row by 2“, where n is the polynomial degree, see

7



Table 1. Since the number of non-zero coefficients must be odd for our lifting

scheme, we can only construct the DWT for B-spline scaling functions with

odd polynomial degrees.

Table 1: Coefficients for two-scale relation of B-splines.

.Analogously, a wavelet can be defined as a linear combination of scaling

functions

~(z) = ~ ii 4(2Z – i). (2.12)
i@z

To ensure that the constructed wavelet has zero direct current (average ob-

tained from integration)l, filter. ~ must satisfy the condition

x ii=o. (2.13)

icz

2.3.1 Linear B-Spline Wavelets

The construction of Z is constrained by our specific lifting approach. Figure 5

depicts the lifting scheme for a linear B-spline wavelet, and Figure 6 shows

the constraints that result from the lifting scheme. These constraints for ~

are

;O = & and ~1 = ~ztil. (2.14)

1This condition is necessary for the continuous wavelet transform [3], but not for the

lifted DWT. However, it is useful to reduce the magnitude of wavelet coefficients that
representvariationsof a function rather then averages.
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s–lift W–llft

Figure 5: Lifting scheme for linear B-spline wavelet. Decomposition (left) and

reconstruct ion (right ) are composed of one s-lift and one w-lift operation.

Figure 6: Constraints for construction of filters h, 1, k, and ~ for linear B-

spline scaling functions.

Using the values from Table 1, we obtain

al = ~ and b2 = 1.

The constraints for ~ are given by

(2.15)

(2.16)

(2.17)

(2.18)
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We note that ~and ~ are symmetric, and the coefficients with negative indices

do not produce additional constraints. Hence, (2.13) becomes

Since tiz and %1are proportional and either one of them appears on the right-

hand sides of equations (2. 16–2. 18), they do not modify ~, except for scaling

it. Thus, we can choose ;I = 1 and obtain the lifting parameters shown

in Table 2. The remaining filters h and / can be derived from these lifting

parameters, which are summarized in Table 3.

●

Figure 7: Constraints for lifting scheme for cubic B-spline scaling functions.

2.3.2 Cubic B-Spline Wavelets

In analogy to linear B-spline wavelets, one can construct wavelets for cubic

scaling functions using one additional lifting step. The constraints for the

lifting parameters are shown in Figure 7. The constraints for ? are equivalent

to
~Zil = ~, &! = ;l, and ;1;3 = ~. (2.20)
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(2.21)

(2.22)

(2.23)

(2.24)

Using equation (2. 13) we obtain

3;z = –16ti3&. (2.25)

Again, we observe that the remaining lifting parameters do not modify z,

except for scaling, since ;2 and ti3 (as well as &2and &) are proportional.

Hence, we can choose ;I = ;2 = 1 and determine the remaining parameters

from the above equations. The resulting values are listed in Tables 2 and 3.

2.3.3 Quintic B-Spline Wavelets

For the quintic case, we only summarize the solution. From the constraints

for ~we obtain the equations
1@ = ~, (2.26)

62 = :;l, (2.27)

&~2 = $, and (2.28)

ti3g1 = :b2. (2.29)

The constraints for ~ can be written in terms of ;s~l and 64%2. Inserting

them into equation (2.13) results in

We can choose ;3, ;2, and ;I to be one, since they do not modify ~. ‘The

remaining lifting parameters are then uniquely determined.
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‘The resulting lifting parameters and filters for our constructions are summa-

rized in Tables 2 and 3. The constructed wavelets are plotted in Figure 8. A

wider class of wavelets is available by using scaling functions different from

B-splines. In particular, it is feasible to construct a wavelet first and obtain

a proper scaling function from the constraints given by the lifting scheme.

-JL--TJL-JL
Figure 8: Linear, cubic, and quintic B-spline wavelets.

‘Table 2: Lifting parameters for DWT and inverse DWT.
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Table 3: Filters for DWT and inverse DWT resulting from lifting parameters.

3

The

Generalization to Arbitrary Polygonal

Meshes

preceding section describes basic lifting operations and constructions

of one-dimensional wavelets based on these operations. In this section, we

generalize the w-lift and s-lift operations to polygonal meshes so that they

reproduce tensor product wavelets and scaling functions for rectilinear base

meshes.

3.1 Index-free Not at ion for Subdivision Rules

Subdivision surfaces are limit-surfaces that result from recursive subdivision

of polygonal base meshes. A subdivision step refines a submesh to a finer

mesh, called supennesh. Positions for all vertices the supermesh are com-

puted from the positions of the vertices in the submesh, based on certain

subdivision rules. Usually, a new vertex position depends linearly on a local

set of vertices. Most subdivision schemes converge rapidly to a cent inuous

limit-surface so that a mesh obtained from just a few subdivision steps is often

a good approximation for surface rendering. In many cases, parametrization

and exact evaluation of limit-surface points is possible, see [23].

13



Figure 9: Topology for Catmull-Clark subdivision. The submesh is drawn in

bold lines and the vertices of the supermesh are denoted as f, e, and v.

For our approach,

Clark subdivision

gon), an edge, or

vertex types as f,

we use a subdivision mesh topology as defined by Catmull-

[2]. vertices in the supermesh correspond to a face (poly-

a vertex in the submesh. We denote these corresponding

e, and v, respectively, see Figure 9,

To describe subdivision rules that determine the new vertex positions,

introduce a notation that is index-free and thus intuitive. W-e use the

eraging operator Zg, where x and y can represent f, e, or v. This operator

returns the arithmetic average of all vertices of type z that are adj scent to

y in a supermesh. If there are no direct neighbors of type z, e.g., x and g

represent the same symbol, then we compute the average for the set of first

neighbors with respect of adj scent primitives in the submesh. Examples for

the index-free notation are depicted in Figure 10.

A subdivision scheme that generalizes bilinear

the subdivision rules

f +- ~f, e +- v,, and

This means that each vertex f is the centroid

B-Splines [10] is defined by

V’ (--V. (3.1)

of its associated face, each

we

av-

vertex e is the midpoint of its associated edge, and each vertex v is the same

point as in the submesh.

14
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Figure 10: Examples

Vd : bv

for index-free not ation. From left to right: Vf is the

centroiod of a face; Ve is the midpoint of an edge; Fe is the midpoint of the

line segment connecting the vertices f belonging to adj scent faces; TV is the

centroid of all adj scent vertices v in the submesh (since there are no direct

neighbors in the supermesh).

A formulation of Catmull-Clark subdivision in index-free notation is given

by the rules

fh~f,e~ ~ (we + ~~) ,’ and v - L (Fv + v. + (% - 2)V) ,w
(3.2)

where nV is the valence (number of incident edges) of a vertex.

3.2 Generalized Lifting Operations

In the case of a tensor product wavelet transform, we apply a decomposition

step of the one-dimensional DWT to all rows and then columns of a dataset,

see Figure 11. This results in sets of coefficients s, WI, 202,W3for four different

types of basis functions, which we denote as

#(~, Y) = 9X~)4(Y)>

!lh(~, !/) = #(~)4(Y),

~z(~>v) = v(~)d(y), and

1!5
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k euen
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‘2,i, k

j- I
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Figure 11: Wiring diagram for two-dimensional DWT. Coefficients are la-

beled with consecutive indices i in z-direction and k in y-direction.

Figure 12: Rectilinear mesh and correspondence between vertices and wavelet

coefficients.

A decomposition step can be considered as an operation applied to a rectilin-

ear supermesh that computes vertex positions for an approximating submesh

and replaces the remaining supermesh vertices by some difference vectors

representing details that do not exist in the submesh. Vertices v represent

coefficients s for scaling functions, vertices e represent wavelet coefficients

WI and W2 (depending on the orientation of edges), and vertices f represent

wavelet coefficients W3, see Figure 12.

Instead of applying an entire one-dimensional decomposition step first to all

rows and subsequently to all columns of a dataset, it is possible to do this

16



f%l<-+d :T“i r~,:;+&} R *, % r?r

f+&@f ~vh~:-:,:,%<@f
Figure 13: An s-lift operation applied to a rectilinear grid is composed of a

vertical (left ) and a horizontal (right) one-dimensional s-lift operation.

Figure 14: Same s-lift operation as shown ,in Figure 13 with different order

of vertex modifications. .First, vertices v are modified (left) and then vertices

e (right).

individually for each lifting operation. Figure 13 illustrates this approach

for an s-lift operation. However, the same operation can be computed by

modifying the vertices v and e separately, see Figure 14. Analogously, a w-

lift operation can be computed by modifying the vertices f and e separately.

Both lifting operations can therefore be defined as follows:

s-lift(a, 13):

v + b2v + 4a2~V + 4ab~v and e ~ be + 2af, (3.3)

w-lift (a, b):

f +- b2f + 4a2Vf + 4abEf and e i-- be + 2aV, (3.4)

‘These lifting operations are defined in a notation suitable for arbitrary polyg-

onal meshes that defining two-manifold surfaces with or without boundaries

17
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Figure 15: Basis functions around an extraordinary

Far left: mesh configuration (top face of base mesh

vertex of valence three.

with control points cor-

responding to basis functions). Top row: linear construction; bottom row:

cubic construct ion; From left to right: scaling function, wavelet correspond-

ing to an edge, wavelet corresponding to a face.

(they can even be applied to non-manifold geometries). For each modifica-

tion step, the overall weight of adj scent vertices that is added to the modified

vertex depends only on the lifting parameters a and b, but it does not de-

pend on the number of adj scent vertices. Thus, wavelet coefficients that are

located closely to extraordinary points may not become larger on average,

than wavelet coefficients located in rectilinear areas. We have found that the

percentage of coefficients affected by extraordinary points is very small for

the finer levels of detail.

We now generalize the wavelets constructed in Section 2 to polygonal meshes,

since they are completely defined by s-lift and w-lift operations. These can

be inverted in the same way as in the one-dimensional case so that an ef-

ficient algorithm for the inverse DWT can be developed. Examples for the

constructed basis functions are shown in Figures 15–17.

18



Figure 16: Basis functions for rectilinear case.

@

Figure 17: Basis functions around an extraordinary vertex of valence five.

19



4 Lossless Geometry Compression

In this section, we construct a wavelet transform that maps integers to in-

tegers and can be inverted without loss. The construction is based on cubic

B-spline wavelets. Similar approaches are feasible for linear and the quintic

wavelets.

We assume (i) that a surface can be approximated by a mesh topology ob-

tained from a base mesh by a number of subdivisions and (ii) that vertex

coordinates are represented as integers. For a surface representation defined

by floating-point numbers, a prescribed tolerance c can be maintained by

scaling all coordinates by & and rounding to the closest integer. For algo-

rithms that reconstruct a base mesh and provide a network of approximating

B-spline patches starting with a set of discrete surface samples we refer to

Eck and Hoppe [9] and Guo [11].

The condition for the existence of an in-vertable integer-to-integer DWT is:

all lifting parameters b; must be integers. This is the case for the wavelets

constructed in Section 2. Thus, the lifting operations defined by equations

(3.3) and (3.4) can be approximated as follows:

integer s-lift (a, b):

integer w-lift(a, b):

f e-- b2f + [~ + 4a2Vf + 4a@fj and e + be + [~ + 2aT,] (4.2)

‘These integer lifting operations can be inverted without loss of precision by

subtracting the term that has been added to a vertex and by reversing the

order of the individual vertex modifications:

20



inverse integer s-lift(a, b):

inverse integer w-lift (a, 6):

Using these integer lifting operations, we now construct the integer DWT

for the cubic B-spline wavelet explicitly. The DWT can be defined by the

sequence

s–lift(–~,1) , w–lift(– 1,1), and s–lift(–~,2) .

To keep wavelet coefficients as small as possible, we divide the lifting pa-

rameters of the last s-lift operation by two, which corresponds to loosing one

bit of precision at each decomposition step. One looses two bits of precision

for the two-dimensional transform. Inserting equations (4. 1) and (4.2) leads

to the decomposition formula that is composed of six vertex modifications,

e+

v+v -

e+-

‘This DWT is applied to the mesh that approximates a surface. The resulting

vertex coordinates are defined by integer wavelet coefficients that have low

absolute values provided the surface is sufficiently smooth. The vertices that

21



belong to the base mesh represent control points for the coarsest level of

detail. Due to the loss of precision in each decomposition step, these are

represent ed by very few bits. The coordinates for all vertices are compressed

by arithmetic coding, see [20]. Since many coordinates are zero or have low

absolute values, arithmetic coding leads to high compression rates. From a

compressed representation we can decode the coordinates and reconstruct an

original surface without loss.

Figure 18: isosurface “two-blobs;’ and base mesh topology composed of 14

faces and 16 vertices.

Figure 19: isosurface “five-blobs” and base mesh topology composed of 18

faces and 12 vertices.

We have applied our compression scheme to the isosurfaces “two-blobs;; and

“five-blobs” obtained from scalar fields, each defined as a sum of gaussians.

The two surfaces and their base meshes are depicted in Figures 18 and 19.

The isosurfaces are approximated by alternating Catmull-Clark subdivision

steps and Newton iteration to project the mesh vertices onto the isosurfaces.

The finest level of detail is obtained after five subdivision steps resulting in a

total of 14338 vertices for each surface. Every vertex is represented by integer

22



wavelet transform “two-blobs” “five-blobs”

linear 24.6 31.0

I cubic I 11.8 I 14.8 I

quintic 18.8 20.5

uncompressed 172.1 172.1

Table 4: Storage requirements in kilobytes for surfaces shown in Figures

18 and 19. The uncompressed representation is using four bytes to store a

coordinate.

coordinates with a precision of 0.01 percent of the diameter of one gaussian.

Lossless compression rates that we obtain with arithmetic coding are listed

in Table 4. In addition, one has to store the base mesh connectivity and the

histogram of coordinate values for the arithmetic coder.

A different application is the representation of surfaces at multiple levels

of detail. Coarse surface representations are defined by wavelet coefficients

corresponding to coarse subdivision levels only. LVavelet coefficients on all

finer levels are replaced by zero. The reconstruction formula for a DWT

defines thus a surface subdivision scheme. Coarse representations for the

isosurfaces “two-blobs” and “five-blobs” are shown in Figures 20 and 21. It

is not recommended to reduce the precision of scaling function coefficients to

display coarse levels of detail. We can either use floating-point arithmetics

or integer-arithmetics based on the original lifting parameters from Section

2.

5 Conclusions

We have introduced a new wavelet transform defined on arbitrary polygo-

nal meshes, suit able for mult iresolut ion represent at ion and compression of

isosurfaces, shock waves and material boundaries. Our method generalizes

23



Figure 20: Isosurface “two-blobs” at two different levels of detail (first and

second subdivision level) obtained from a floating-point implementation of

the DWT. From left to right: linear, cubic, and quintic wavelet transform.

tensor product B-spline surfaces. It is possible to derive a set of B-spline

patches from our surface representation at any level of detail. We have also

presented a lossless geometry compression scheme based on an integer-to-

integer wavelet transform and arithmetic coding. Future work will be di-

rected at efficient and automatic construction of the required base meshes

for surfaces defining extremely complex geometry.
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figures as in Figure 20,
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